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The energy-transmission characteristics of an array of open convergent-channel-type 
wavebreakers to a normally incident wavetrain is studied experimentally and 
theoretically. A model of the wavebreaker transmission response to a sinusoidal 
incident wavetrain on a constant-depth ocean is developed as a boundary-value 
problem within the framework of linearized water-wave theory. This results in an 
integral equation based on a Green-function solution to the Helmholtz equation, 
which is solved numerically for each of several wavebreaker geometries over a range 
of incident wavelengths. Experiments on fixed model wavebreakers performed in an 
open wave tank are described, and results are compared with the numerical 
predictions. Theory and experiment indicate that the convergent-channel design is 
effective in attenuating the transmitted wave at resonant values of the incident 
wavelength h that scale on the channel length L. Forces experienced by each 
half-wavebreaker are largely transverse ; the calculated longitudinal forces for the 
fixed breakwater are small compared to those on a solid wall except at one resonance 
near L/h = 0.5. Experiments indicate that this last condition does not occur for a 
floating breakwater, where the corresponding transmission of wave energy is high. 

1. Introduction 
While observing the wave-diffraction pattern generated by a row of parallel moored 

yachts in a marina, one of us (PN J) noticed that the sequence of convergent channels 
formed between the bows of adjacent boats appeared to attenuate an onshore inci- 
dent wavetrain, even though there was finite separation of boat hulls. The waters on 
the leeside were relatively calm, indicating that the moored vessels were operating 
effectively as wavebreakers. The passage between adjacent boats first converged to 
the points of minimum vessel separation and then diverged to the sterns. It was 
observed that as incident waves reflected obliquely from the boat hulls their 
amplitudes first increased in the convergent section but thereafter diminished rapidly 
past the passage throat. The boats responded to the wave excitation through 
oscillation mainly in pitch and in roll. 

In Transportable Breakwaters - A Survey of Concepts (1971) no fewer than 106 
different types are listed, designed to operate on widely differing principles. These 
include both floating and energy-absorbing configurations in addition to several 
variations on the conventional rock-fill breakwater. None of the catalogued designs, 
however, appear to utilize the wave-attentuation properties of a converging channel. 
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FIGURE 1. Progressive waves incident on wavebreaker array in water of constant depth d .  
Wavebreakers are symmetrical about y = 2mh, m = - oc), . . . , - 1,0, I ,  . . ., co. 

A possible schematic design of a breakwater consisting of an array of vertical-sided 
channel-type wavebreakers is shown in figure 1 .  We suggest that  this configuration 
may offer several advantages over more-conventional types. The open structure 
allows mass transfer and will permit waves of both very small (ripples) and large 
wavelength to  pass through largely unattenuated, so that the breakwater will operate 
as a high- and low-pass filter. The interaction of the reflected part of the spectrum 
of incident wavelengths with the wavebreaker array will take place largely in the 
gently narrowing channel openings, thus reducing wave-breaking and slamming 
forces often experienced by breakwater surfaces parallel to incident wavecrests. 
Subsequently the forces experienced by the wavebreaker will be largely transverse 
with the component in the direction of the incident wave distributed over the large 
surface area of the channel walls. This may be of particular importance for reduction 
of mooring forces in a floating configuration. 

The aim of the present study is thus to investigate theoretically and experimentally 
the performance of an open-channel wavebreaker. We consider a simplified model in 
which each component of the array consists of two vertical plates or wedges arranged 
in a V-shape and fixed to the ocean floor. I n  $2  an integral equation is obtained for 
the solution of the Helmholtz equation describing the diffracted wave pattern 
produced by the wavebreaker array. A scheme for the numerical solution of this 
equation is given in $2.3. The present experiments are described in $ 3  and 
comparison between the experiments and theory are discussed in $4. Although we 
are presently concerned with the fixed breakwater, the possible relevance of the 
present results to  the more difficult (and interesting) floating-array configuration is 
discussed briefly in $5.  
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I 

FIGURE 2. Flow in strip h 2 y > 0 showing geometry of half-wavebreaker. 

2. Theory 
2.1. Statement of problem 

We consider the interaction of a field of incident progressive waves on an inviscid 
ocean of constant depth d with an infinite array of identical wavebreakers. The basic 
configuration is as shown in figure 1. The Cartesian (x, y, z )  coordinate system is such 
that the positive x-axis lies in the direction of motion of the incident waves, which 
are normally incident on the array and of wavelength A. Gravity g acts in the negative 
z-direction. The solid fixed wavebreakers extend to the ocean floor and are two- 
dimensional in (x, y) cross-section. Each wavebreaker must be symmetrical about its 
centreline at y = 2mh, m = - CO, . . . , O ,  . .., + CO, but its shape is otherwise arbitrary. 
Owing to this overall symmetry of the wave-wavebreaker system we may restrict 
attention to the equivalent case of flow in a strip or half-channel in h 2 y 2 0 with solid 
walls on y = 0 and y = h as shown in figure 2.  

We note here that the assumption of normally incident waves is a significant 
simplification, since in practice waves will be obliquely incident. We believe that the 
Green-function approach given in 52.2 may be extended to the case of general 
incidence, but owing to symmetry breaking the computational effort required for the 
present wavebreaker geometry is substantially increased. The effects - possibly quite 
profound - of wave incidence are thus left for future investigation. 

The irrotational fluid motion is described by a velocity potential @ satisfying 

We seek a solution to (1)  in the form 

where w is the frequency, aI and k are real constants and @(x, y) is a complex-valued 
function. In  (2 ) ,  and elsewhere here, physical quantities will be understood to be the 
real part of generally complex functions. Substituting ( 2 )  into (1) gives the two- 
dimensional Helmholtz equation for @ : 

5-2 
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The height of the ocean free surface above the still-water line z = 0 is z = ~ ( x ,  y, t ) .  
We assume that amplitudes of the free surface are everwhere small, so that $ and 7 
satisfy the linearized free-surface kinematic and dynamic conditions respectively as 

on z = O .  

-+g7 = 0 
at 

Substituting ( 2 )  into (4) gives 

(4) 

Letting the incident plane wave from x = - 03 be given by 

@ 1 -  - eikX, (7)  

( 5 )  shows that we may put k = 27c/h, where h is the incident wavelength while (6) is 
the linearized dispersion relationship and a* 4 h is the incident wave amplitude. Note 
that the use of (4) means that we cannot describe nonlinear phenomena such as 
wavebreaking . 

The scattering problem is now to find $(x, y)  satisfying (1) and the zero-normal- 
velocity boundary condition given, from ( 2 ) ,  by 

a4 - = 0, 
an 

on y = 0, y = + h and on W, the shape of the half-wavebreaker in the (x, y)-plane 
in figure 2, n being the outward normal. Putting 

@k Y)  = $1 + $S> (9) 

where @s represents the wave scattered by the wavebreaker, the radiation condition 
requires that $s represents an outgoing wave as [ x( + cc . The asymptotic form of $s 
for large 1 x I cannot be specified a priori, and will be discussed subsequently. 

2.2.  Integral-equation formulation 
I n  the remainder of $2, except where otherwise specified, all quantities will be 
assumed to  be in non-dimensional form with length- and timescales h and (hlg): 
respectively. Applying Green’s identity to we obtain the well-known result (Morse 
& Feshbach 1953) 

In  (10) S refers to a closed contour formed of %?, the lines y = 0 and y = 1 and closed 
by lines x = constant denoted by X - ,  and X ,  at z-t, 03. The Green function G(r(  r’) 
is a fundamental solution to (3), with r being a general point and r’ a point on S. 
Dashed quantities are those evaluated on S ,  and p = 1 if r lies inside S, ,u = t if r 
lies on S (but not at a corner) and p = 0 otherwise. On S, s’ is the arclength. 

We now choose G(r I r‘) in the form 

G(rlr’)  = 7ci I: [H61)(k((x-x’)2+(y-y‘-2u)2)a) 
00 

v--, 

+ HF)(k((x -x’)2 + (y + y’ -2v )2 )9 ] ,  (1 1) 
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where Hc)(kr)  is the Hankel function of the first kind and zeroth order, which is 
the well-known radiating-source fundamental solution of (3). Equation (1  1) is the 
solution of (3) a t  t = (x, y) due to a unit source a t  r’ = (d, y’) on %? together with two 
infinite arrays of image sources at the points (d, y’+ Zv), v = - “0, .. ., - 1 , 1 ,  . . ., co 
and (x’, - y’ + 2v), v = - 00,.  . . , + 00. The image system is constructed such that 

which follows from 

and the reciprocity relation 
(~G/aY)y=o,  y-1 = 0 

G(r(r ’ )  = G ( r ] r ) .  

Equations (7) and (9) show that i3cj5s/i3y = 0 on y = 0 and 1 ,  and this result 
together with (12) shows that the contribution to the integral in (10) from that part 
of S on y = 0, y = 1 must vanish. Since in (lo),  (11)  we have utilized only the 
radiating-unit-source solution, it follows that ds must represent an  outward-going 
wave as I sl --f 00. Hence the overall solution (9) must satisfy the radiation condition 
for large 1x1, from which it follows that the contribution to (10) from X ,  and X-, 
must vanish (this can be verified subsequently). Using (7)-(9), (10) then becomes 

Letting r + a point on ‘3 gives y = i, and (13) becomes a Fredholm integral equation 
of the second kind for cj5s on W. The numerical solution of (13) and (11)  is the basis 
for the present calculations. 

Equation (11)  is not a convenient form of G for either numerical or asymptotic 
evaluation. Alternative equivalent expressions are given by Morse & Feshbach (1953) 
as 

00 ei&vlZ-s’l 

G(r 1 I’) = 2xi Z cv cos ( m y )  cos (xvy’) ____, (14a) 
v=o  QV 

where E,, = 1, E ,  = 2 ,  v 3 1, and 

and the branch of the square root has been chosen so that G(r(r ‘ )  gives outgoing waves 
as ~ Z ) + O O .  

Use of ( l 4 a )  in (13) then leads to the modal expansion for the transmitted 
(x > L cos @,) and reflected waves (x < 0) respectively: 

P 



128 

where P is the smallest integer satisfying (P+ I )  n > k, and for P < v 
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where 8’ is the local tangent angle to %. As x - f ~ o o  each term of the second series in 
(15a) decays exponentially, so that asymptotically the scattered wave is a system 
of P+ 1 outgoing components. The zeroth order ( v  = 0) is a plane wave of wavenumber 
( k x ,  ku) = ( k, 0) corresponding to the incident mode. The higher-order modes 
(P 2 v 2 1 )  represent oblique, multiply reflecting wave systems with wavenumber 
components (Qv,  +nv), x++oo, and (-Q,,,nv), x + - a ,  u =  1 ,..., P, generated 
by image-interference effects. For k = pn, p = 1,2, . . . , (14) contains square-root 
singularities corresponding to transverse resonance effects (Ursell 1951), where the 
representation (13), (14) fails. Use of (14a) and (15) in (10) shows that the contri- 
bution to the integral from X- oo and X ,  indeed vanishes. Note that (15) agrees with 
results obtained by Srokosz (1980) using a different method. 

The incoming and outgoing time-averaged flux of energy across X-, and X, must 
be in balance, since, first, the wavebreaker does not extract energy, and, secondly, 
we have neglected viscous dissipation. This leads to a relationship between the 
D+,,  D - ,  which may be obtained by applying Green’s theorem to q5 and its complex 
conjugate $* (Newman 1976). Use of (7)-(9) and (15) then yields 

expressing time-averaged energy conservation. 
Since the present experiments were limited to dimensional wavelengths greater 

than 2h in figure 1, we restrict attention in the calculations subsequently described 
to waves with h > 2. Hence P = 0 in (15a), and the scattered wave contains only the 
plane fundamental mode. We note, however, that the present method is able to handle 
A < 2, except near the irregular wavelengths k = px, where special solution methods 
are required (for a discussion see Mei 1978). Once q5s on % is known, D,, and D-, can 
be calculated from (154. The transmitted and reflected complex free-surface 
amplitudes are 

aT = aI( 1 + D+o), UR = D-0. (17)  

The fraction of the incident energy transmitted is ET = 11 + D+,I2. The fraction 
reflected is E,  = I D-,12, and energy conservation becomes simply 

E,+E, = 1. (18) 

The dimensional force exerted by the fluid on each half-wavebreaker is 

{ F z ,  F,) = J o  J p’{sin8’, -ccosV)ds’dz, (19) 
-a 0 

where the pressure p is given by p =  - p  Re{a@/at), p being the water density. Using 
(2) we obtain 

= Re [ e-’”’‘ Jw (#J& + eikz’) (sin O’, - cos 0’} ds‘ . (20) 1 2x(FX, F,} 
pga, Ah2 tanh (2ndlA) 
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2.3. Numerical solution 
We use an approximate numerical method to solve (13) (p = $) and (11) .  First $9 

is divided into an adequately large number N of straight-line segments of length 
As, = S,--S,-~, n = 1 ,..., N ,  with midpoints F, = (Z,,jj,). It is assumed that 
& = q5g) is constant over the nth segment and likewise that eikx‘ in the integral 
in (13) is constant and given by eikZn over the segment. A discretized form of the 
integral equation is then obtained by satisfying i t  a t  F,, n = 1 , .  . . , N .  This results in 
N complex linear equations for the q5g) which we write as 

where 

B,, = J ’ G(F,lr’) ds’. 
Sj-1 

Equations (21 a )  may be solved by a standard method once the integrals (21 b, c) are 
evaluated. The kernels in (21) were calculated from (14 b ,  c )  and their derivatives. The 
rapidly convergent series terms were evaluated as double-precision (64 bit) sums to 
order M ,  where lexp ( - n(M2 - ( k / ~ ) ~ ) t l  x- 2’ I ) I was of the order of single-precision 
(32 bit) accuracy. The residual sum in ( M +  1, . . . , CO) was then obtained by a simple 
integral approximation. 

For small R = lr-r’l it  may be shown that 

G(rJ  r’) = ( - 1 +$k2R2) In R2 + F ( r J  r’) ,  (22) 

where F(B) eC3 at R = 0. Putting Rj, = lrj-r,l,  where rj  is a point on segment 
j ,  A,, and B,, were calculated by first splitting G and aG/an’ according to (22). The 
component integrals of the lnR2 term were then evaluated analytically in each 
segment, taking due care near the In R and R-l Cauchy principal-value singularities 
in B,, and A,, respectively. The integrals of F(r1r’) were approximated with a 
three-point Simpson rule over the segment. For segments close to the image lines 
y = 0,1, the contributions due to nearby image elements were isolated and also 
treated by singularity extraction. 

The only satisfactory means of testing solution accuracy in practice is to demonstrate 
convergence with increasing N .  A further check on global accuracy (but by no means 
a complete check) is given by the error in satisfying (1 8). For a test on a circular-cylinder 
wavebreaker of unit radius, the calculated aR and aT were found to  be independent 
of N for N 2 25 with As z n / N .  Excellent results satisfying (18) to  within 0.005 were 
obtained for N = 30 over a broad range of k. 

The half-wavebreaker geometry considered presently is illustrated in figure 2. It 
consists of two plane surfaces a t  angles and $2 joined smoothly by the arc of a circle 
of dimensional diameter 6 = 0.08h. The gap between the wavebreaker and y = h is 
a and L is the length. With = e2, the plate geometry actually tested is obtained, 
and this proved to be a rather difficult case to calculate accurately. The reason is that 
for 6 = 0 the representation given in (10) becomes degenerate and the correct 
formulation is then in terms of dipoles only. This leads to a model which is quite 
unsuited to numerical treatment, since the resulting integral equation is of the first 
kind and moreover i t  contains a rather more complicated kernel than those in (13). 
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Wave generator Float for Wavebreaker Float for Beach 
incident waves transmitted 

waves 

FIGITRE 3. Wave tank and apparatus for wavebreaker experiments. 

It was found, however, that, for small but finite 8, satisfactory results could be 
achieved using the present method with As z 6. With As = 0 ( 2 L / N )  this requires 
N - 25(L/h) with 6 = 0.08h. The results for L l h  = 2.667 ( L  = 0.4 m) with N = 70 in 
figures 4-6 and for L / h  = 5.333 ( L  = 0.8 m) with N = 130 in figures 7-8 satisfied 
(18) to  within 0.1-0.5%. Some cases for L / h  = 2.667, a /h  = 0.133 were calculated 
with N = 130, and these showed three-figure agreement for a T ,  aR compared to  the 
N = 70 results. For a long wavebreaker, L/h  = 8 ( L  = 1.2 m), the results for a limited 
h-range shown in figure 9 are a compromise value of N = 150 (execution time varies 
as N3 for larger N )  for which (1  8) was satisfied to within 1.5 % . I n  all geometries equal 
As  was used on both wavebreaker surfaces with 4 equally spaced points distributed 
on a circular arc. 

3. Experiment 
3.1. Apparatus 

The experiments were conducted in a wave tank in the Department of Mechanical 
Engineering, University of Melbourne. The tank is constructed of glass and steel. It 
is 14.6 m long, 0.3 m wide and contains water of nominal depth 0.5 m. A schematic 
diagram of the apparatus is shown in figure 3. The wave generator was of the 
' Salter-duck ' type, which generates approximately sinusoidal progressive waves by 
an oscillatory pitching motion. The frequency and amplitude of the pitching motion 
could be controlled independently, giving independent control of the wavelength over 
the range 0 . 4 8 4  m and of the wave amplitude from near zero to about 6 cm. At the 
end of the tank an artificial beach was installed consisting of oblique layers of gauze 
and perspex plates perforated with a matrix of holes. The function of the beach was 
to absorb the incoming waves by turbulent dissipation of the incident energy so as 
to inhibit back-reflection effects. 

Wave amplitudes in the tank were measured by means of floats, designed to operate 
as linear transducers for small wave amplitudes. A linear variable-difference 
transformer (LVDT) was fixed to  each float, producing an output voltage which for 
small amplitudes is directly proportional to  the vertical displacement of the float from 
its mean level. Output signals from the LVDTs were fed into a two-channel oscillo- 
graphic recorder, enabling permanent records to  be made of incident and transmitted 
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waveforms. The floats were calibrated by plotting output voltage against the 
measured change in mean level obtained by slowly filling and draining the tank. Thus 
the floats are assumed to operate quasi-statically. 

The wavebreaker models tested consisted of rectangular perspex and/or wooden 
plates (hence = $2 in figure 2) of thickness 6 = 12 mm and of lengths L = 0.4, 0.8 
and 1.2 m. For a given L, the configuration utilized was that of two half-wavebreakers 
(i.e. 2 plates) positioned symmetrically with a central gap as shown in figure 3, such 
that the vertical tank walls acted (apart from viscous effects) as planes of symmetry 
separated by 2h = 30 cm. Each model extended to the tank bottom and was held 
in position by a system of clamps, wooden blocks and rubber wedges. 

3.2. Procedure 

While the beach a t  one end of the tank was effective in absorbing transmitted waves, 
there proved to be no effective means of eliminating secondary reflection of the 
reflected waves a t  the wave generator leading to subsequent interference with the 
incident wavetrain. Thus the experiments could not be conducted in a quasi-steady 
state over long periods. The procedure adopted was thus to obtain measurements from 
a wavetrain containing a finite group of waves. The wave generator was turned on 
for a predetermined period so as to produce a group of waves long enough for incident 
and transmitted amplitudes to be measured but not so long as to  produce secondary- 
reflection problems. The recorded waveforms were then closely examined to  ensure 
that a quasi-steady state had been reached in each case. The transmitted waveform 
was observed to  become substantially two-dimensional within 1.5 m downstream of 
the breakwater trailing edge, enabling a good measurement of its amplitude in this 
position. The incident waveform amplitude was set nominally from the previously 
calibrated wavegenerator amplitude control, but actual measurements were obtained 
from a float about 1 m downstream of the wavegenerator. Wavefrequencies were 
obtained directly from the accurately known wavegenerator frequency and corre- 
sponding wavelengths were obtained from (6). This simple method was tested (with 
no wavebreaker present) by moving one float relative to another so as to reduce the 
phase difference between their motions to zero. The floats must then be separated 
by an integral multiple of A. Measured results agreed with (6) to within a few percent. 

4. Results and discussiod 
As might be expected from the well-known analogy between acoustics and 

linearized water-wave theory, the general trend of the computed transmission 
response in figures 4-9 is qualitatively similar to the acoustical response of an area 
restriction in a duct (see Kinsler & Frey 1962). For increasing h/h ,  a sequence of 
alternate resonances (defined here as an ET minimum) and transmission maxima is 
followed by full transmission in the long-wavelength limit. At resonance ET = 0 for 
all a/h  considered, and the corresponding h/h appear to be independent of alh. In  
contrast the ET maxima are approximately proportional to a/h over the calculated 
range. For a/h  > 0.6 (not shown) this behaviour reversed with ET = 1 at ‘anti- 
resonance ’ independent of alh. Zero transmission through finite gaps is well known 
and may occur in fully open channels with side (i.e. Helmholtz) resonators (Buchwald 
& Williams 1975). 

Figures 4-9 indicate that resonant values of L/h  occur approximately in half-integral 
increments. This suggests that  the mechanism of resonance is the establishment of 
a near-standing wave of $, 1, I$, 2, . . . wavelengths in the converging channel formed 
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FIGURE 4. Energy-transmission response of flat-plate wavebreaker array ; L/h  = 2.667, 
a /h  = 0.133, S/h = 0.08: -, calculation; 0, experiment. 
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FIGURE 5. Energy-transmission response of flat-plate wavebreaker array; L/h  = 2.667, 
a / h  = 0.2667, S/h = 0.08: -, calculation; 0, experiment. 

I1 2 
0 

by the upstream wavebreaker surfaces. This is consistent with the amplitude-response 
characteristics for Llh = 2.667 shown at the minimum L/h resonance in figure 10 
and also with quarter-period wavebreaker wetted-surface profiles a t  two resonant 
conditions depicted in figure 11. Thus each channel operates somewhat like an 
acoustical horn, trapping the incident wave a t  resonance while radiating a strongly 
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FIGURE 6. Energy-transmission response of flat-plate wavebreaker array ; L / h  = 2.667, 
a / h  = 0.40, 6 / h  = 0.08: ---, calculation; 0, experiment. 

00 

FLQURE 7.  Energy-transmission response of flat-plak wavebreaker array ; L / h  = 5.333, 
a/h = 0.133, S/h = 0.08: -, calculation; 0, experiment. 

directional (i.e. upstream) signal with negligible transmission. Additional phase 
information (not shown) indicated that at resonance the wave system between the 
converging channel walls is nearly planar, but is strongly three-dimensional in the 
immediate vicinity of the gap. I n  figure 10 the local amplitude lq/aT\ is substantial 
in the region behind the wavebreaker, indicating strong interaction across the gap 
a t  resonance. 



134 D. I .  Pullin and P .  N .  Joubert 

O.* t 

00 

5 2 1 0.5 L f X  0.2 0.1 
FIQURE 8. Energy-transmission response of flat-plate wavebreaker array; L/h = 5.333, 

a /h  = 0.267, Slh = 0.08: -, calculation; 0, experiment. 
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FIGURE 9. Energy-transmission response of flat-plate wavebreaker array ; L / h  = 8.0, 
a/h = 0.133, 6 / h  = 0.08: -, calculation; 0, experiment. 

The measured E ,  shows general agreement with the calculations in figures 4-9 near 
the maximum resonant A,  but there is finite transmission as resonance and the 
measured ET maxima are substantially less than the predictions. Apart from some 
viscous dissipation a t  the wavebreaker and tank boundaries, there are two principal 
sources of error not accounted for in the theory which will contribute to these 
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FIQURE 10. Contours of equal surface elevation amplitude; L l h  = 2.667, a / h  = 0.267, 
6 / h  = 0.08, h / h  = 6.7 (resonance). Values of IT/aII as shown. 
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0 WG / / 

p! __----  __-- -  c-- ,-*-dO* 

/ . -4 _-*  

FIGURE 11.  Wetted-surface profiles on wavebreaker at { period intervals; L/h  = 2.667, 
a/h  = 0.2667: -, upstream face; ---, downstream face. Resonance conditions: (a )  L / h  = 0.90; 
(b )  L / h  = 0.40. 

discrepancies. First there is the effect of finite wave amplitude. Incident wave 
amplitudes were of order 1-5 cm with maximum values of amplitudelh well below 
the Stokes limit. Both theory and experiment however indicated large wave slope 
around the wavebreaker trailing edge for the range of incident amplitudes. While no 
large-scale wavebreaking or wave slamming against the wavebreaker surface was 
observed, some smaller-scale surface turbulence was noted near the exit gap. This 
may have been due to the presence of higher harmonics in the incident wavetrain 
which would be scattered quite differently to  the fundamental frequency and may 
lead to  an overestimate of Jar \  and hence of the incident energy carried by the 
fundamental frequency. Secondly the co-oscillation (see figure 11) of fluid in the wedge 
sections on either side of the plate barrier at resonance will result in large velocities 
a t  the training edge. I n  fact, for S - t O ,  = @ z  there will generally be a square-root 
singularity in the velocity. Thus we would expect the theoretical model to break down 
at the plate edge owing to flow separation resulting in oscillatory vortex formation. 

L and a constant is shown in figure 12. 
The maximum resonant A decreases rapidly with respect to increases in A@ = @ z  - 

The effect of varying $z while holding 
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FIGURE 12. Energy-transmission response of wedge wavebreaker array near maximum resonant h ; 
L/h  = 2.667, a / h  = 0.267, S/h = 0.08 = 15.9'). Values of A$ shown. 
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FIGURE 13. Magnitudes of oscillating forces in z- and y-directions; L / h  = 2.667, S/h = 0.08; vertical 
lines indicate resonance: ---, a/h  = 0.133; -, a / h  = 0.267: ---, F, for solid wall. 

indicating that the bchaviour of the volume of water contained in the wedge of angle 
+2 on the downstream side is strongly coupled with the incident wave at resonance. 
This somewhat counterintuitive result shows that the function of the gap in the 
breakwater behaviour is not restricted to allowing full transmission at high A. It 
further suggests that possibility of 'tuning ' the wavebreaker to resonance with the 
incident frequency through a variable-geometry control. 
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The magnitude of the oscillating forces on a half-wavebreaker as calculated from 
(20) are shown in figure 13 for L / h  = 2.667. The large maxima near L/h  z 0.40 occurs 
because the wetted-surface profiles on each of the solid surfaces are out of phase as 
illustrated in figure 11 ( b ) .  In  contrast, a t  the L / h  = 0.9 resonance the mean difference 
in the wetted-profile height is small (figure 11 a ) ,  leading to small forces and moments. 
It thus may be expected that further resonance a t  larger L/h  will lead to com- 
parably small loads, so that the half-wave resonance is the only one which 
generates substantial forces. Note that for a solid-wall wavebreaker on x = 0 then 
2n: 1 F, I / [pgaI Ah2 tanh (2n:d/h)] = 2. 

5 .  Conclusions 
We have investigated experimentally and theoretically the response of an array 

of convergent-channel wavebreakers to an incident single-mode wavetrain with h > 2h. 
Each geometrical configuration studied was found to exhibit resonant behaviour 
(ET = 0) a t  a finite sequence of incident wavelengths. The mechanism of resonance 
appears to be related to be the establishment of a nearly two-dimensional standing 
wave in each channel constriction, which in combination with an out-of-phase 
co-oscillation of fluid on the lee side of each channel wall generates strong upstream 
radiation and negligible transmission. I n  the present configuration with the wave- 
breaker fixed, the half-wavelength resonance produced sizable calculated transverse 
forces for each half-model (zero for each double wedge), and longitudinal forces 
comparable to  those exerted on a solid-wall wavebreaker, while both force components 
were considerably reduced a t  higher-order resonances owing to cancellation effects. 
Some informal experiments conducted on a floating model, however, indicated that 
the L/h  - 0.5 resonance is not present in this configuration. Here a catamaran 
arrangement was used for lateral stability and buoyancy chambers were located at 
each wedge apex and stern to give longitudinal stability. It was noted that the 
L/h  = 0(1) resonance (with small forces) remained, but that, a t  L/h = 0(0.5), the 
model followed the incident wave in a heaving motion with only a relatively small 
amplitude oscillation in pitch, and with large energy transmission and consequent 
small longitudinal forces. 

The authors wish to acknowledge Mr H. E. Hunt and Mr A .  K. Hamer who assisted 
with the collection of the experimental results. 

R E F E R E N C E S  

BUCHWALD, V. T. & WILLIAMS, N. V. 1975 Rectangular resonators on infinite and semi-infinite 

KINSLER, L. E. & FREY, A. R. 1962 Fundamentals of Acoustics, 2nd edn. Wiley. 
MEI, C. C. 1978 Numerical methods in water-wave diffraction and radiation. Ann. Rev. Fluid Mech. 

MORSE, P. M. & FESHBACK, H. 1953 Methods of Theoretical Physics, Part I ,  chap. 7 .  McGraw-Hill. 
NEWMAN, J. N. 1976 The interaction of stationary bodies with regular waves. In Proc. 21th Symp.  

on Naval Hydrodyn. (ed. Bishop, Parkinson, Price), pp. 491-501. Mech. Engng Publ. 
SROKOSZ, M. A. 1980 Some relations for bodies in a canal, with application to wave-power 

absorption. J .  Fluid Mech. 99, 145-162. 
Transportable Breakwaters - A Survey of Concepts 1971 TR 727, US Nav. Civ. Engng Lab., Port 

Hueneme, California. 
URSELL, F. 1951 Trapping modes in the theory of surface waves. Proe. Camb. Phil. Soc. 47,347-358. 

channels. J .  Fluid Mech. 67, 497-51 1 .  

10, 393416. 


